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1 ABSTRACT

I. A queueing model is considered where customers arriving in a

Poisson stream are given the choice of either joining the waiting line

or - by declining to do so - of foregoing the benefits accruing through

j• service. The decision of each customer is based on his concrete benefit-

cost analysis. Since his service time is constant and exhaustive

L. information as to the actual state of the system is available both

r, of the alternatives presented to the individual customer are completely

deterministic and his decision is not reached under uncertainty or risk.

The cost structure envisayed as well as additional assumptions give rise

to a queueing model with limited waiting room apparently not previously

I. considered in the literature. After detailed analysis of the model and

blending with the cost structure it is shown that the criterion for

self-optimization of the customer will not bring about social optimization,

the latter being defined as the maximally feasible expected net gain

per unit time accruing to the totality of customers. A number of simple

and comprehensive optimization equations are derived. By marginal

analysis the correctness of the simple equations is verified and their

applicability is extended to models possessing more general character.
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SOCIAL OPTIMIZATION VERSUS SELF-OPTIMIZATICT IN WAITING LIMES

by

I. Adlerl/ and P. Naorz/

1. Introduction

The following problem has been discussed in a recent communication

(Naor (1969)): customers arrive in a Poisson stream at a service

station; each of them is made aware of the current length of the queue,

of the monetary reward he will attain through completion of service,

and of his own waiting cost per unit time. Any customer is given the

choice between two alternatives: joining the queue or balking the

opportunity of doing so. It is desired to reach a rational decision

between these alternatives. What is the proper criterion on which to

base the decision? It was shown in that study that, if each customer

reaches his conclusion on the basis of his narrow self-interest, a

reasonable social objective function representing the public good will

not be optimized. Rather it was shown that individuals acting solely

on the basis of their self-interest will impose more congestion on the

system than is socially desirable.

The particular model employed in the above study envisaged service

timc to be an exponentially distributed random variable. Hence, in such

1/Stanford University, Stanford, California

V-Israel Institute of Technology, Technion; Haifa, Israel
Stanford University, Stanford, Calif
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a situation the individual customer - on pursuing his self-interest -

reaches his conclusion under risk; that is, he realizes that the random

variable "future queueing time" a priori possesses an Erlang distribution

(with known parameters) and in the comparison of outcomes of his possible

decision he makes use of expected queueing costs (among other items).

Now in any actual realization it may turn out, on hindsight, that the

customer could have been better off, had he decided differently. One

is tempted to consider the possibility that these a posteriori erroneous

decisions are somehow associated with the contradiction between social

optimization and self-optimization.

One purpose of the present investigation is to show that such is

not the case. In this study a model is presented such that the

individual customer is faced with a decision problem under certainty

and yet his rational criterion of choice (under the specification of

self-optimization) between the alternatives will not bring about social

optimality. Again, as in the previous case, at some times the individual

customer will be prepared to join the waiting line whereas overall

considerations of optimality deem this prohibitive. It is the general

rule that self-optimization tends to over-congest the system as compared

with social optimization.

In the previous study algebra only was employed in the derivation

of the various quantities of interest. The exponential distribution

assumption with respect to the service time generated a situation where

the state space was capable of description by a single integer only

and the number of possible states was finite. This is advantageous if

one's primary interest is to demonstrate the contradiction between

2 I



self-optimization and social optimization. However, the case of

exponential service distribution does not lend itself to convenient

generalizations if one intends to investigate situations where the state

space is infinite and comprises al3 real numbers in the interval (0,v)

(v > 1). In order to make progress toward such cases it is convenient

to start with fixed and equal service times. The feasibility of

attaining a higher degree of generality through the use of fixed (rather

than exponentially distributed) service times contributes to the

rationale underlying the approach presently taken in this communication.

Finally it is useful pointing out that the "pure" queueing problem (i.e.,

the stochastic model only, without the assumed cost structure) proposed

here, to wit, the employment of a bounded and "non-integral" waiting

room, seems not to have been dealt with in the literature. It is quite

feasible that such models are of use in various applications other than

those envisaged here. Thus, for instance, the mixing problem in

chemical engineering stated and solved by Shinnar (1967) in queueing

terms may be generalized on the lines of the pure stochastic model

developed in the present paper.

2. Model Characteristics and Cost Structure

In the present section we shall state the precise assumptions

relating to the stochastic model as well as to cost structure. However

before going into the specifics it is useful to observe and state two

distinctive qualities of the general setting in which the present model

is situated.

1. Since the leitmotif of this study is contrasting two



I
optimization procedures it is essential to define two distinct

objective functions, one related to the aspirations of (non-

cooperating) decision making individuals, the other concerned t

with the public good. There is no (mental) difficulty regarding

the first position; the individual customer simply seeks to

maximize his own net income. For a reasonable objective

function to describe the second position one has to introduce

a set of specific assumptions circumscribing the structure of

public good. In the present communication we shall follow

the mode employed in the preceding study (Naor (1969)) and

choose the average net income accruing to the totality of

customers in unit time as the objective function to be maximized.

This choice of an objective function presupposes one of the

following situations to prevail: (i) There exists essentially

only one genuine (overal) optimizer and individual customers are

subcontractors of decision making, as it were, who are obliged

by administrative fiat to reach their conclusions on the basis

of rules prescribed by the overall optimizer. (ii) Alternatively

a situation is envisaged where net gains of customers are

considered to be comparative and additive, and by common

agreement may be redistributed. Cooperation between customers -

displayed by some through refraining from joining the queue

apparently against their own best interests - will produce

additional net income in unit time. This will be redistributed

and, eventually, the average net profit accruing to each .

customer will exceed that of self-optimizing customers within

!



a framework of non-cooperation. A feasible instrument of con-

trol under the present circumstances is the imposition of a

toll which, if wisely determined, will produce both social

optimality and a reserve stock of money to be used for

redistribution. Proper identification of a set of circumstances

under which an overall objective function is deemed to exist

is essential in an analysis of the present character.

2. In most queueing models with a built-in optimization procedure

(e.g., through the agency of priority service rules or through

control of the service intensity) it is assumed that all

arriving customers - sooner or later - are going to be serviced.

The feasible control actions (if such are envisaged at all)

in most queueing models do not typically include the perempting

non-admission of a customer based on a cost-benefit analysis.

While a number of models were developed which included the

element of potential non-service - e.g., the balking and

reneging models - this contingency was presented in probability

terms only; non-admission was never considered to be an

instrument of economic control. In the balking and reneging

models the probability of not joining (and of leaving) the

queue is associated with the customer's impatience - a

psychological criterion rather than an economic one. Diverting

the customer from the queue without rendition of any service

is then a feasible course of action in the model area under

consideration. To obviate difficulties - mostly of psychological

origin - which stem from the feeling that customers must get

5:• •- • i I • ''' " I • ;"• : ''
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some sort of service eventually, we may re-circumscribe the

present framework in seemingly different terms: customers

may be served in two alternative, distinct modes. There is

the standard mode of service which can always be relied upon

and which is not associated with any queue of customers;

it serves as reference point against which any other mode of

service (concretely just one) may be compared. The non-standard

mode of service is advantageous in monetary terms as compared

with the standard mode if the waiting line of customers, ahead

of the new arrival, is sufficiently small. If we describe

the system in such terms - advantageous non-standard service

with potential queue in front of the station compared with

generally disadvantageous but queue-free standard service -

we really deal with a model completely equivalent to the

previous situation. To sum up, for a discussion of self-

optimization versus social optimization to make sense non-

admission of suctomers to the service station must be a feasible

control action. Customers diverted from the station may be

thought of either as not receiving service at all or as being

rendered a standard type of service for which it is never

necessary to queue up.

After these observations and the setting of the general framework

the specifics of the stochastic model and of the cost structure may be

stated in the following terms:

(i) A stationary Poisson stream of customers - with parameter X -

arrives at a single service station.

6!



(ii) The service time necessary to satisfy and dispatch a customer

is a constant T; all service times are equal.

(iii) On successful completion of service, the customer is endowed

with a reward R (expressible in monetary units). All customer

rewards are equal.

(iv) The cost to a customer for staying in a queue (i.e., for

queueing) is C monetary units in unit time. All customer

costs are equal.

(v) The newly arrived customer is required to choose one of two

alternatives: either (a) he joins the queue, incurs the

losses associated with spending some of his time in it, and

finally obtains the reward; or (b) he refuses to join the

queue - an action which does not bring about any gain or

loss. The choice is made by the customer on comparing the

net gains associated with each of these alternatives. Two

modes of decision are examined. In one mode customers are

assumed to act solely in their self-interest; it is sufficient

for the net gain to the individual to be non-negative in

order to induce him to join the queue. In the other decision

mode each individual acts on behalf of the totality of

customers and he assumes every customer to act in the same

spirit; this customer seeks a decision criterion by which

average net income in unit time is maximized.

Model assumptions (i), (iii) and (iv) are identical with those

appearing in the previous study. Assumption (v) is more inclusively

formulated than its original counterpart in order to render equal states

7
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a priori in the derivations to be carried out to both self-optimization

and social optimization.

Assumption (ii) is radically different from its predecessor: Fixed -

rather than exponentially distributed - service times are envisaged and

this causes the individual customer to be placed in a deterministic

decision situation. We note, furthermore, that this assumption (in

conjunction with the others, of course) gives rise to a stochastic

model which is interesting per se and may be put to use in other contexts

as well. The mathematical techniques which have to be employed under

the present assumption (ii) are of a different quality than those useful

(and sufficient) if the assumption of exponentially distributed service

times is considered valid. Finally, it will be shown that several of

the results to be attained here by employing assumption (ii) serve as

a more advantageous point of departure for some generalization than can

be expected from the original model.

3. Finite and Nonintegral Queueing Capacity

What is the decision criterion of the individual customer seeking

self-optimization? Clearly he reaches his decision under conditions

of certainty. Upon his arrival he views the queue ahead of him which

is made up of two parts: k customers are in the waiting line and one

is in service. The outstanding service time of the latter is observed

to be T (0 < T < T). If he chooses to join the queue then - assuming

throughout the discipline "first-come-first-served" - his total queueing

time, from the instant of his arrival and joining to the instant of his

service completion, will equal kT + T + T (the third term being the

8 -
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customer's own service time. Since the decision is based on the customer's

self-interest it will be considered correct if the cost of queueing does

not exceed the reward. That is if, and only if, the (weak) inequality

R - C[(k+l)T + T> (1)

is satisfied the newly arrived customer should join the queue.

It will be sometimes advantageous to view this from a slightly

different angle. Let the occupancy or the state K of the system

at any arbitrary instant be defined as the ratio of the (future) queueing

time of the last customer in the line and the service time T.

T T

Furthermore let a dimensionless index v be defined as

R-- (3)
Vs MNC

Inequality (1) is transformed into

K<v5 -(4)

which is interpreted in the following manner: The incoming new customer

observes the state K of the system; if it does not exceed the value

of v s-1 the customer joins the queue, otherwise the customer forgoes

queueing as well as service. Now all customers act by the same

criterion; hence K can take on values in the interval [O,v s]. The

maximum value v will be realized under the following circumstances:

an incoming customer encounters the system in a state v s-1, the

9
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maximum value at which the system is still accessible to new arrivals

and - by the act of joining - he transforms the system into state v .s

Whenever the system is in a state within the interval (vs-l,v 8] it is

said to be inaccessible to new customers.

We note that the rule prescribing accessibility makes sense only

if the inequality

vs > (5)

pertains. In physical terms this means that the reward to be collected

by the customer at the completion of his service must not fall short of

the cost of time spent in service. If inequality (5) does not apply

the proper policy is to refuse access to all customers and (possibly)

disband the service station altogether.

The decision mode associated with the individual customer's self-

interest has then given rise to a queueing model with Poisson arrivals,

constant service times and finite queueing capacity (i.e., limited

waiting room). Now the present model is different from those that have

appeared in the literature on queueing theory in the following respect:

In the typical model where finite queueing capacity makes its appearance

the number of potentially available waiting spaces (the "size" of the

waiting room) is assumed to be integral; occupancy too is considered to

be an integer and changes in jumps whenever a customer departs or joins

the queue. In the present model the service process changes (decreases)

the occupancy continuously and uniformly, the total capacity is a real

positive number (and not necessarily an integer) and arrivals - followed

by absorption into the queue - bring about discrete changes. It is not

10 .1



difficult to verify that the specialization of capacity values to integer

(without imposing any further conditions) suffices to generate what was

named before the "typical model with finite queueing capacity". We

observe that, if the assumption of exponentially distributed service

times replaces the constant service times postulate, the "typical model"

cannot be transformed into a generalized model; both capacity and actual

occupancy are, of necessity, integers in this case.

Occupancy is essentially equivalent to the concept of virtual

waiting time (or occupation time as it is termed sometimes) introduced

by Takacs; indeed it is the ratio of occupation time to service time.

The mode of decision seeking social optimality will give rise to a

queueing model of identical structure (though with one different

parameter). Of course, unlike the self-optimizer, the social optimizer

is not faced with a decision problem under conditions of certainty.

Indeed he will have to take into account a somewhat probabilistic future,

to wit, the Poisson stream of customers who will arrive at the service

station. Now by the very quality of the homogeneous Poisson process

the total useful information is contained in the knowledge of the

arrival intensity (a parameter not relevant for the self-optimizer's

decision). Hence the social optimizer, too, will at the instant of a

customer's arrival, exercise control by observing the occupancy K and

make the new arrival join if, and only if, the criterion

K<v 0 - 1 (6)

is satisfied where v is a function of both v and the traffic

intensity. Adherence to such a rule will generate a system possessing

ii
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a structure identical with that discussed before. Poisson arrivals,

constant service times, finite and nonintegral queueing capacity.

It appears then worthwhile to delve deeper into the analysis of

such a system. This will be done in the sections which follow.

4. Some Basic Relations

We have then: a Poisson stream of incoming customers possessing

arrival intensity X; a single service station; each customer requires

exactly T time units for the completion of its service; there is

limited waiting room and the occupancy K can never exceed the constant

v > 1; access to the waiting line is granted to a new customer only if

the occupancy does not exceed v-l.

The traffic intensity p is defined as

p = (7)

We note that under the present model assumptions it is not necessary to

put restrictions on the permissible values of p in order to obtain

steady state conditions.

The state of the system at an arbitrary instant is specified either

by the occupancy K or by the pair (i,t) where i is the number of

customers in the queue (i.e., inclusive of the customer in service) and

t is the time which has already been devoted to the customer in service

For the specific purposes of optimization - to be discussed in a

later section - the constant v will be assigned a subscript, e.g.,

v or v•
s 0

12



=K+-=K+l-E if K>O

=0 if K=O0

= T if K>O

= 0 if K=0

We are concerned with the steady state regime of our system. Let

PO be defined as the probability of the service station being idle

whereas pi(t) (1 < i < [v] + 1, 0 < t < T) represents the probability

density pertaining to the elapsed service time t and the queue i.

Now consider the density pi(t) and, in particular, the change

that is taking place i(t) during a very small time interval At.

Such change is associated with the difference of jump probabilities

into, and out of, the state (i,t), that is Pi_l(t)xat - Pi(t)dt.

We define

n = [v] (10)

e = T(v-n) (11)

This is, of course, a joint density - it should be noted that one

random variable (elapsed service time) is continuous while the other

(queue size) is discrete. The representation in such terms, pi(t),

possesses some advantage - for our present purpose - over a repre-

sentation by a density associated with a single random variable,

e.g., p(K). Potential concentrations and discontinuities (and, in

fact, there is a concentration at the point K = 0 and a discontinuity

in 9(K) at the point K = 1) will be exhibited in a more natural

way on utilizing the present notation.

13
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take cognizance of the feasible values of i and of e, and apply the

idea of associating the density change within a small time duration

with the difference of Jump probabilities. The set of differential

equations, pertaining to the present queueing model, is derived

dp1(t)dt - -Xpl(t) (0 _< t < T) (12a)

d p i ( t ) = X Pdt -t =[piJ 1(t)-Pi(t)] (0 < t <T , i < i < n) (12b)

dp-(t) = Xpn_1 (t) (0 < t < T-e) (12c)

dp•(t)dr'~t = A[nlt-nt] (T-0 < t < T) (12d)

d~nlt, ) (nlt)P~

dt Xpn(t) (T-0 < t < T) (12e)

Boundary conditions are established on examination of the changes

that take place at times t = 0 and t = e

PO = p1 (T) (13a)

pl(O) = Pox + p2 (T) (13b)

Pi(O) = pi+l(T) (1 < i < n) (13c)

Pn+l(T-e) = 0 (13d)

The probability of having i (> 0) customers in the queue is

given by

14f
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Pi Pi(t)dt 1 < i < n (14a)

T

Pn+ 'T-e Pn+i(t)dt (l4b)

Obviously these probabilities - together with p -0 obey

n+l
SPi = (15)

i=O

The probability, Pc, of the service station being closed to

incoming traffic may be evaluated as

oT-e~td pTonlt

P j.=T- +r P+ 1 (t)dt (16)

The busy fraction - which in the present type of model is not

identical with the traffic intensity p - is equal to

b = 1 - p0  (17)

During the busy period the rate of discharge of customers from the

service station equals T-1. Hence the average rate of discharge -

i.e., the expected number of customers leaving the service station in

unit time is then evaluated as the product (l-po)T -. Now the average

number of customers admitted to the service station in unit time is

given by X(l-Pc ). Within a steady state regime these two quantities

must be equal. Hence after some rearrangement we obtain

i X -Po0
l-Pc

15
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If, as is assumed here, service times are fixed and equal then, by

first principles, the average number of times a state t (disregarding

i) is realized in unit time cannot depend on t. Hence the solutions

Pi(t) must obey the following equation

n or n-i-
n pi(t) = (l-po)T1 = X(l-Pc) (19)

i=l

It is apparent that the idle fraction p0  plays an important role

in the central formulas of the model. This quantity is a function of

the parameters v and p. Depending on the circumstances we may

desire to use the obvious notation p 0 (v,p) or po(v).

Application of (rather lengthy) standard solution methods on the

set (12] as well as combination with other equations of this section

yields

po(vn) = (2. + X (- 1 )Jl (Te(n'J)XT+X]"lPOV,) l +jl .' (-'

(20)

= (1+ E(- 1 )i Il(V'j) pe(v'J)P"

j=l U-J}:

If n exceeds the value 1 (the alternative case is elementary)

it may be shown after some further manipulation that the following result

is attained

p1 (v,p) = po(v,p)(eP-l) if n > l (21a)

:il, _, (iRo[iJoj [i-J)•]j'
P1 (v,P) - Po (vp)[e•+ ( -'l)je P(L J + (-' (21b)

J-1 J!

for i< i<n <

16
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Let (21) is rather interesting; formally the probabilities are

given by equations which are identical with those relating to the

analogous model with unlimited waiting room. These were already evaluated

in the early days of queueing theory - indeed they can be found in Fry's

(1928) textbook. However beyond the formal identity we must take note

that the two positions diverge in three aspects at least: a) the

probability p0 which appears as a multiplier in (21] is different in

the two cases. b) The traffic intensity p must fall short of the

value 1 in the infinite waiting room model; in the limited waiting room

model this restriction is removed. c) In the infinite waiting room

model the validity of (21b) ranges over all feasible values of i; in

the present case the range of applicability of (21b) is limited to those

values of i for which the station is never closed. Beyond the

intrinsic usefulness of the set [21] we are made to realize - through

its presentation - that basic formulas may be stable in some sense even

though some model assumptions are modified - slightly or otherwise.

The change brought about by the model modification manifests itself only

in the variation of a key quantity, e.g., in the present case: po.

It may be desirable to examine the solution of the set (12] of

differential equations in somewhat sharper detail. The following is a

representation of pi(t).

Let two functions zi(t) and Zi(t) be recursivcly defined as

zi(t) = eXTzi 1l(O) + XI(Zii(t)-Zi 1 l(T)] i > 2 (22)

t
zi(t) TO zi(t)dt' i >2 (23)

17
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and let the "starting function z 2 (t)" be equal to

z 2 (t) = e XT - [X(T-t) + 1] (24)

The solution pi(t) of the set [12] is then given by

pl(t) = poke (T-t) (25a)

pi(t) = po0 eX(T-t)zi(t) (25b)

for all i and t in (1 < i < n, 0 < t < T) which is feasible for

v > 2 and for i and t in (i = n, T-e < t < T) in which case v

may take on any value exceeding 1. The restrictions on i, t and v

enumerated above may be physically interpreted as relating the set (251

to precisely those states in which the service station is a) busy and

b) accessible. The proof of (25] is inductive and rather lengthy; it

will not be presented here.

Finally in this section we put forward an equation representing

the average queue size, q(v,p), in its dependence on v and p

q(v,p) = n-p (v,p)e(n-l)T+(l-x)+ n (e(n-j [ (-i) 11 [(n-j)•T+]-i
j=2 2=1 (2-i):

+ (_l)J-l [(n-J)XT+XLe]Jl (1-Xe)])

(26)

Here again no proof is furnished in the paper; we wish to state

that the derivation of (26) is burdensome and apparently manipulative

skill rather than depth is required.

S| ... ....-- , J _-i )-, , .1 8



Equation (26) continued

n.po(v,p)fe(v~l)P(+npvp) + n (e(v-j)p J-1 (_l) _ [(v-j)p] -1
0 + E (Tyr

+ (-l)j-I [(v-J)P]J'l (l+np-vp)])]

In equation (26) sums are defined to equal zero if the lower
1

value of the summation index exceeds the upper one, e.g., E ( ) = 0.
J=2

Hence the queue formula (26) is valid for all values of v > 1.

5. Optimization

The derivation of a strategy for self-optimization is rather

elementary. The self-optimizing customer is aware of the quantities

R, C and T. He utilizes relation (3) to compute vs. Upon arrival

at the service station he observes the actual occupancy K. If

inequality (4) is observed he reaches an affirmative decision to join.

The decision is negative in the alternative case.

The impact of this strategy on the "society" of customers is that

average gross gains ensue at the rate RT (1-p ) in unit time; the

resulting congestion incurs an average cost of Cq. Hence the average

net gain, G, accruing to customers in unit time is given by

G = RT(l-po) - Cq (27)

The quantities pc and q in (27) are computed through the use

of equations (20) and (26); the arguments p and v in these equations

are the observed traffic intensity XT and the chosen strategy vs,

respectively.

19
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Next we consider social optimization. Our point of departure is

equation (27) and it is presently assumed that p 0  and q are functions

of p (an observed datum) and of a v whose optimal value, v 0 , will

have to be determined.

Now G is a differentiable (and possibly unimodal) function of v

and hence the technique of optimization that suggests itself is

differentiation. After surveying the structure of Po and of v one

is prone to think that, prima facie, differentiation would be a

formidable task - technically speaking. In order to obviate the

technical difficulties we proceed as follows:

Two quantities, N and D, are defined as

N=e(V')P(l+np-vp) + n (e(v-j 1 (-1 (-).1 +

J=2 1=1
(28)

+ ()il ( j-l (l+,-vp)])

nJ1D - -+ E (_lj-lJ- [(,ýpJ-1 e,,j (29)

j=1

Using this notation we may write

Po = (30)

q N(31)

The derivatives of N and D (with respect to e) are closely related.

dNd= -eK(e,n) (32)

20 I



and

dD =TK(O, n) (33)d9

where the function K(e,n) is defined as

K((,n) = X2e(n-)• + E (-)-l 2e(n-J)P+Xi([(n-J)p+X']Ji
j=2 (J-i)!

(34)

+ [(n-j)i + l j-2

(j-2)! )

Again in (34) the summation is defined to yield zero if the lower value

of the index exceeds the upper one. Hence K(H,n) is defined over all

feasible values of the arguments n and 0. It is not difficult to

verify that it never takes on negative values.

We obtain the derivative-, with respect to 6, of the net profit

function (n is held constant, of course)

dG d R(i-po) d R R CN

d-•' d - C-1] = Al-J - --L - Cn +-21]
a ~ ~ r -6Tcii ? T

- (en)[R - C(Dt• 7T)r C((en) + T
D 2 D D D-D

(35)
K(-,in) [R -C> +

D 0

CTK(9,n) (po 1.+q)
D D

The quantity

D(pov _ +.q) = v N (36)
0 s T

is a uniformly decreasing function of 9 since its derivative with
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respect to 9 is made to equal

d(Ys D N)
8~ T -N D dD T dN) D

dO +T' ee e' (37)

on utilizing equations (32) and (33).

Now for sufficiently small v expression (36) can be made positive

(given that v > 1) and for sufficiently large v we can always make

it negative. As all other factors on the right hand side of (35) are

dGpositive we deduce that the function •- possesses exactly one zero

at that value of the argument (v or 0) at which the function

vspo - v + q vanishes. Hence vo, the value which brings about social

optimality, my be obtained from

Vspo(VoP) - VO + q(Vo ,p) o (=8)

Equation (38) is of both theoretical and practical interest. We

note that the problem was originally set in terms of obtaining the

derivative (with respect to e) of the net gain function. The

differentiation would have to be carried out within strips of constant

n since a change in n causes e to jump between its two extreme

feasible values, 0 and T. The analysis undertaken and, in particular,

the devices utilized generated optimization equation (38) in which

dependence on 0 is suppressed and a simple formal structure is

attained.

Formula (38) is also a convenient starting point for numerical

work. As formulpeted in this study the determination of v. precedes

that of v ; hence vo turns out to be an implicit (and not
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particularly convenient) function of vs and p. To set up a table

of numerical values one would start with given v and p and seek the0

appropriate value of v • This is analogous to the approach undertaken
5

in the previous study. The numerical computation of v as a function

of V and p is straightforward and presents no extraordinary

practical difficulties. Furthermore the physical interpretation of suchV o-q(Vo,0P)
" reformulation of (38) (v = Po(V P) ) is not farfetched: For

"a queueing model of the type described here, the traffic intensity p

and the socially optimal capacity v0 are given; it is desired to find

that capacity, v , which self-optimizing customers will generate, if

no regulation of traffic - financial or administrative - is imposed.

What is the optimal (maximal) rate of net gain G ? To derive

this we return to (27) and assume that the optimal v, i.e., v0, has

been made the criterion of decision. We have then

R(l-po(v,)) 0 c)Go = - T -_ Cq(Vo0,P)

= C[Vs(l-po(Vsp)) - q(vo,p)] (39)

= C[Vs-V0 -(V po(V ,p )-V0 +q)] = c( Vs-)

Equation (39) is both simple and informative:

First it makes one realize in immediate terms that the inequality

v s >_ Vo0 (40)

must hold (where equality is realized if, and only if, vs = 1 (p > 0)).

This, of course, is one of the objectives of the present study.
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Secondly we observe that the right hand side of (39) is very closely

related to the regulatory toll that should be imposed on incoming

customers in order to maximize average (social) net gain in unit time.

Indeed, the optimal toll So, is obviously given by

So = CT(vs-V0) (41)

We have then the interesting (and, on first sight, slightly strange)

result that the optimal toll to be imposed on the customer is identical

with the average optimal gain accumulating during one service period.

so = GOT (42)

Thirdly, or.e is induced to pose the question whether the simple

formulas attained here - such as (38), (39) and (41) - are amenable to

simple physical interpretations and, possibly, to further generalizations.

In the folluing we present the marginal analysis pertaining to social

optimization. We shall show that it leads to the very same equations

possessing elementary structure.

It is the social optimizer's function to select an indifference

capacity (v 0 -l) possessing the following characteristic. A customer

who arrives at an instant - t = 0, say - at which the ;.rstem possesses

the occupancy K = v -1 will generate identical gains to society either
*o

Unlike the case discussed in the previous study (where an optimal toll

was one taken from a range of values) there is exactly one optimal

toll value which maximizes (social) net gain in unit time.

2
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by joining the queue or by declining to do so. Neither alternative is

preferable to the other from the viewpoint of public good. We note that

if the customer joins the queue the identical state v 0 -1 which would
*

instantaneously prevail were he to balk will be regenerated in exactly

T time units (with probability 1). During this time access to the

service station is blocked for new customers who (possibly) arrive within

that interval. Exactly one customer will be discharged from the service

station during the blocked period - at time (Vo-n 0 )T. The queue size

before and after this discharge is no +1 and n 0 , respectively; it

is easy to verify that the average queue length is vo. Hence, as a

result of joining, the total net benefits reaped during T amount to

R-CTvo. However the decision to join at time t = 0 (and occupancy

K = vo-i) has further implications. It will be convenient to represent

them by an instantaneous expected net gain rate gjoin(t;v -1). Since

the net gain (R-CTv 0 ) during the interval (0,T) has already been

separated out the function gjoin(t;vo0 l) takes on the value 0 up

to time T

gjoin(t;Vo-1) = 0 (0 < t < T) (43)

Beyond T the function g join(t) takes a course which incorporates

the presently existing queue, the accumulation of new customers the

discharge of serviced customers and the rewards gained by them. Clearly

the instantaneous expected net gain rate tends to G(Vo0) as time t

This property depends on the assumptions that customers arrive in a

Poisson stream at the station.
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tends to infinity

gjoin (t;vo0-1) -* G(vo0) (44)

t-*c

The alternative decision to balk at time t = 0 brings forth another

instantaneous expected net gain rate alk (t;vo-i). By virtue of

the characteristics stated before, joining the queue at time t = 0

generates a state at time t = T which is identical with the state at

time t = 0 brought about by the balking decision. Hence the following

must hold

gbalk(t;v 0-1) = gjoin (t+T; Vo-1) (45)

and, of course, analogously to (44) we have

gbalk (t;vo-l) --*G(vo0) (46)

t

What is the expected accumulated financial advantage A(t) at t

(conveniently assumed to exceed T) of balking over joining where we

disregard the terms R-CvoT which favored joining and were separated

out. Clearly A(t) is given by
tt t t,

At~t) rdt g (t')dt'A(t) JO gbalk (t')dt' T0 gjoin(' O gbalk(t') d T T join

f t k(t')dt' t-T alk(t )dr' t.Tbalk(t' )dt' (47

When t tends to infinity the integrand on the right hand side of (47)

tends to the constant G(Vo); hence the integral (47) - with t tending

to infinite - is evaluated as
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A(=) = TG(V0 ) =TG (48)

The gist of marginal analysis is that under conditions of

optimality this advantage of balking over queueing (over an infinite

horizon*) must equal the advantage R-voCT of Joining over balking

within the interval (O,T). Therefore we obtain

R -VooTTGo (49)

But equation (49) is essentially identical with (39). The other

general optimization formulas (38) and (41) may be easily derived from

(39). Hence by using marginal analysis we have obtained the procedure

for optimization without the "messy" computational technicalities. For

actual numerical work it is, of course, still necessary to evaluate

queue sizes and idle fractions through the use of formulas (28)-(31).

Marginal analysis has led us one step beyond the original model

under investigation. The argument leading to (49) - and hence to (38)

and (41) - remains essentially valid even if the assumption of constant

and equal service times is modified. It is sufficient to assume that

service times are distributed (rather than fixed) and that the class of

distributions is characterized by the expected remining service time

of a custoeer being a strictly decreasing and continuous function of

elapsed service time. This is a rather mild restriction. The minor

modification that has to be introduced in the argumentation is that the

We observe that the interest rate is (implicitly) assumed to equal

zero; hence it does not mak an appearance in the argument.
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phrase "exactly after T time units" has to be replaced by "after T

time units on the average" wherever it appears. The salient point is

the following: whenever a situation exists such that a marginally joining

customer is made to produce average net gain in unit time during the

ensuing T time units on the average, equations (38), (39) and (41)

must hold. We metnion in passing that, under conditions of social

optimality a customer admitted to the service station in a non-marginal

fashion as it were generates net gain exceeding the average.

Even if service times are distributed in a manner other than that

prescribed in the preceding paragraph, equations (38), (39) and (41)

may remain valid - at least in some approximative sense. Thus, for

instance, let it be assumed that the service times are exponentially

distributed; this is the case discussed in the previous study. Clearly

the expected remaining service time of a customer is a constant rather

than a strictly decreasing function as postulated before. Yet if in

the equations representing the idle fraction and the queue the integer

n is replaced by the (close) real number v it can be shown that

relations (38) etc. are revalidated. At the danger of being repetitious

let it be restated that the analytical, as well as numerical, derivation

of the optimal p and q may be quite a difficult task.

6. Conclusion

The program of this investigation was threefold:

The first objective was to show that the decision rule of self-

optimizing customers operating within a framework of certainty and of

equality (pertaining to R, C, and T) tends to overcongest a queueing

28
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system. This is the proper meaning of inequality (40). The basic

reason for the divergence between social optimization and self-optimization -

as expressed in inequality (40) - is the fact that the individual customer

need not consider the penalties he is (possibly) inflicting upon future

customers by the very act of his joining the queue. The toll levied on

a marginally joining customer could be considered to represent compensation

for damage, as it were, caused by the customer to future customers.

The second objective was to establish a vantage point for further

generalization. This has been attained by alternating ordinary maxi-

mization (that is: caried out by differentiation) and marginal analysis.

A set of formulas, simple and comprehensive - (38) (39), and (41) - has

been shown to hold under conditions more general than originally specified.

Thirdly the stochastic queueing model with non-integral capacity

has been developed and, possibly, this may be applicable in situations

other than those possessing an optimization nationale. The structure and

form of associated quantities - probabilities and expectations - may be

quite interesting per se and some potential industrial applications

indicate the necessity for further study.

The general subject area of this study possesses useful and

interesting extensions. Some further investigations are under way.
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